
SPIN - An Extensible Microkernel
for Application-specific Operating System Services

Brian N. Bershad Craig Chambers Susan Eggers Chris Maeda
Dylan McNamee Przemyslaw Pardyak Stefan Savage Emin Gün Sirer

Dept. of Computer Science and Engineering FR-35
University of Washington

Seattle, WA 98195
Technical Report 94-03-03

February 28, 1994

Abstract

Application domains, such as multimedia, databases, and parallel computing, require operating system services with
high performance and high functionality. Existing operating systems provide fixed interfaces and implementations to
system services and resources. This makes them inappropriate for applications whose resource demands and usage
patterns are poorly matched by the services provided. The SPIN operating system enables system services to be defined
in an application-specific fashion through an extensible microkernel. It offers fine-grained control over a machine's
logical and physical resources to applications through run-time adaptation of the system to application requirements.

1 Introduction

This white paper describes an operating system called SPIN that will address the requirements of the coming generation
of resource-intensive applications. In SPIN, these requirements are achieved through the use of application-specific
services. An application-specific service is one that precisely satisfies the functional and performance requirements of
an application or class of applications.

The key to application-specific services is an adaptable kernel that enables system resources to be efficiently and
safely managed by the application. By efficient, we mean that capable applications execute more quickly and with less
programming complexity than when using a more conventional platform, such as Ultrix or Mach. By safe we mean
that multiple applications may run at the same time, yet be protected from one another through hardware and software
firewalls.

SPIN supports adaptability through an extensible microkernel that safely executes application-specific code either
in the kernel or at user-level. In SPIN, an application specifies a service as an implementation partitioned into three
components: an application-level component, which is linked into the application's address space, a kernel-level
component, which provides fast, specialized access to in-kernel services, and a user-level server component which
manages long-lived service state. The way in which the service is partitioned is determined by its safety, sharing, and
performance requirements.

SPIN is structured around an extensible microkernel architecture. The microkernel exports interfaces that offer
applications fine-grained control over a few fundamental system abstractions, such as processors, memory, and I/O.
SPIN is extensible in that application programs and servers can install program sequences called spindles that execute
in the kernel in response to hardware and software events, such as processor exceptions and context switches. Spindles

SPIN - An Extensible Microkernel
for Application-specific Operating System Services

Brian N. Bershad Craig Chambers Susan Eggers ■
Chris Maeda Dylan McNamee Przemyslaw Pardyak

Stefan Savage Emin Gün Sirer

W0^^ils^^

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

University of Washington

Seattle 98195

19950421 089 a.w ^wi—-^ II'Sm^UED 5

SPIN - An Extensible Microkernel
for Application-specific Operating System Services

Brian N. Bershad Craig Chambers Susan Eggers •
Chris Maeda Dylan McNamee Przemyslaw Pardyak

Stefan Savage Emin Gün Sirer

Technical Report 94-03-03

Department of Computer Science and Engineering
University of Washington

Department of Computer Science and Engineering, FR-35
University of Washington, Seattle, WA 98195, USA

SPIN - An Extensible Microkernel
for Application-specific Operating System Services

Brian N. Bershad Craig Chambers Susan Eggers Chris Maeda
Dylan McNamee Przemystaw Pardyak Stefan Savage Emin Giin Sirer

Dept. of Computer Science and Engineering FR-35
University of Washington

Seattle, WA 98195
Technical Report 94-03-03

February 28, 1994

Abstract

Application domains, such as multimedia, databases, and parallel computing, require operating system services with
high performance and high functionality. Existing operating systems provide fixed interfaces and implementations to
system services and resources. This makes them inappropriate for applications whose resource demands and usage
patterns are poorly matched by the services provided. The SPIN operating system enables system services to be defined
in an application-specific fashion through an extensible microkernel. It offers fine-grained control over a machine's
logical and physical resources to applications through run-time adaptation of the system to application requirements.

1 Introduction

This white paper describes an operating system called SPIN that will address the requirements of the coming generation
of resource-intensive applications. In SPIN, these requirements are achieved through the use of application-specific
services. An application-specific service is one that precisely satisfies the functional and performance requirements of
an application or class of applications.

The key to application-specific services is an adaptable kernel that enables system resources to be efficiently and
safely managed by the application. By efficient, we mean that capable applications execute more quickly and with less
programming complexity than when using a more conventional platform, such as Ultrix or Mach. By safe, we mean
that multiple applications may run at the same time, yet be protected from one another through hardware and software
firewalls.

SPIN supports adaptability through an extensible microkernel that safely executes application-specific code either
in the kernel or at user-level. In SPIN, an application specifies a service as an implementation partitioned into three
components: an application-level component, which is linked into the application's address space, a kernel-level
component, which provides fast, specialized access to in-kernel services, and a user-level server component, which
manages long-lived service state. The way in which the service is partitioned is determined by its safety, sharing, and
performance requirements.

SPIN is structured around an extensible microkernel architecture. The microkernel exports interfaces that offer
applications fine-grained control over a few fundamental system abstractions, such as processors, memory, and I/O.
SPIN is extensible in that application programs and servers can install program sequences called spindles that execute
in the kernel in response to hardware and software events, such as processor exceptions and context switches. Spindles

enable applications to define customized kernel interfaces and implementations with which application-specific services
Can be built.

1.1 Motivation

The next decade will bring a radical change to the way we do computing as'applications that were at one time
considered niche services such as large distributed databases, high-quality multimedia, and programs for massively
parallel systems, become common. Although the application demands are changing substantially, the operating systems
base on which those applications run is not. Consequently, application performance is frequently limited by today's
operating systems, which provide an inadequate interface to computer system services '

The key problem facing operating systems is how to support efficiently a range of applications with widely varying

riZ H fS Znent VinUal mem°ry PaSe-rePlace™nt policies are based on application mixe!
from the 1970 s and early 1980's [Babaoglu & Joy 81] that have good reference locality. These policies though are
poorly suited for newer applications, such as information retrieval and multimedia, where page access patterns are
seemingly random, or strictly sequential and temporally constrained [Kearns & DeFazio 89] Similarly current file
system implementations assume that most files are accessed sequentially [Ousterhout et al. 85]. However important
applications such as information retrieval have file access patterns that are quite non-sequential [Gray & Reuter 921
As a result, many database systems manage in-core disk caches manually because existing operating systems do such
a poor job of meeting their needs [Stonebraker 81]. We believe that other performance-critical applications will follow
the same route because no current operating system allows system resources to be efficiently and safely managed
through tailored interfaces and implementations.

The resource demands of current and future applications can be met by an operating system architecture in which
services can be implemented on an application-specific basis. As a consequence, a service can be defined Ion* after
the operating system has been written, compiled, and shipped as product. The service, which can come bundled
with the aprncation, relies on low-level interfaces exported by the operating system kernel. These interfaces, which
themselves can be tailored, enable the service to allocate and manage system resources such as CPUs, disks networks
and memory. ' '

Contemporary commercial and research operating systems provide interfaces that are inadequate for use by

oPS10s"s?emfiC SerViC6S' By "inadequate'" we mean that one of the followin8 statements can be made about the

. there are no interfaces through which application-specific services can exercise direct control over the logical
and physical resources, or e

• some interfaces for resource management exist, but they are clumsy, or inefficient, or both, or

. all applications have unconstrained access to resources, providing good performance when programs are well-
behaved, but poor system stability when they are not.

In the first case, applications must suffer with whatever interfaces and abstractions are provided by the operating
system In the second case, the "right" abstraction can be realized, but at an intolerable performance cost Finally in
the third case, any abstraction can be realized for a single program, but isolation between programs is not possible In
all three cases, a mismatch between the interfaces exported by the operating system kernel and those required by an
application-specific service make such services infeasible.

1.2 Adaptability in SPIN

Our goal in building SPIN is to provide applications with an adaptable kernel platform on top of which application-
specific services can be built. The ideas underlying SPIN stem from research over the last several years that has
addressed some of the fundamental performance problems that arise in modern operating system services includin»
interprocess communication, synchronization, thread management, networking, virtual memory, and cache mant
agement [Draves et al. 91, Bershad et al. 92, Stodolsky et al. 93, Bershad 93, Yuhara et al. 94, Maeda & Bershad 93

Thekkath et al. 93, Feiten 92, Young 89, McNamee & Armstrong 90, Anderson et al. 92, Wheeler & Bershad 92]. In
each case, the interfaces exported by a service were poorly matched to the needs of important applications. The solution
to the performance problem came from enabling applications to adapt the behavior (interface and implementation) of
system services to realize maximum performance. Each change, though, required careful and deliberate modifications
of the operating system kernel.

In SPIN, adaptability is achieved with an extensible microkernel that allows an application to specify a service as
an implementation partitioned into an application component, an application-specific kernel component, and possibly a
user-level server component. The microkernel provides lightweight and portable abstractions of the physical hardware
such as threads and virtual address spaces which ire used by the higher-level services. By allowing applications to
participate in the implementation of high-level services, we permit applications to make informed decisions about their
resource requirements. By placing the implementation within an application component (application-level library), or
a kernel-level code sequence, the service can be accessed with low latency.

The application-specific kernel components are called spindles (SPIN Dynamically Loaded Extensions), and enable
applications to define the precise interface and implementation for kernel services that they require. Spindles enable
a service to be partitioned across the user/kernel boundary in the most efficient manner that still satisfies its safety
and sharing requirements. Specifically, installing code at the kernel level allows for flexible and rapid response to
system hardware and software events. For example, an application program can install a code sequence that runs
each time a thread from that program's address space is preempted in response to an interrupt, a time-slice event, or a
higher-priority thread. In the first two cases, the program can ensure system-wide or application-wide invariants about
preemptability. In the third case, the application can enforce constraints that deny priority inversion. Although the
code sequences execute in kernel-mode, their safety is verified by a trusted compiler.

1.3 Alternatives

Microkernel technology has been promoted as a solution to many of the adaptability requirements of demanding
applications [Accetta et al. 86], and in the past few years there has been dramatic growth in the number and quality
of microkernels [Phelan et al. 93, Hildebrand 92, Rozier et al. 88]. Current practice is to structure a microkernel-
based operating system as one or more server address spaces that collectively implement operating system ser-
vices [Golub et al. 90, Julin et al. 91, Rozier et al. 88, Khalidi & Nelson 93, Hildebrand 92]. However, it is often as
difficult to modify a service in another address space as it is to modify one placed in the kernel, diminishing many of
the flexibility advantages that favor microkernel architectures. In addition, the communication overhead incurred when
contacting servers can result in poor performance [Maeda & Bershad 92, Maeda & Bershad 93]. These facts make it
quite difficult to tailor an operating system service to the requirements of a particular resource intensive application
using conventional microkernel technology.

1.4 The rest of this paper

The rest of this paper is.structured as follows. In Section 2 we describe the SPIN architecture. In Section 3 we discuss
the system's extension language and compiler. In Section 4 we show how applications in several domains are facilitated
by SPIN. In Section 5 we describe related work. In Section 6 we discuss the system's status and directions.

i^sossioa Fos*

; IfIS GRA&X
I pi'XC TAB
Unannouucfd
Justification.

Availability (Jode

""""" ~ j^vsii-aad/or
gtsft I Special

2 SPIN: A system for application-specific services

In this section we discuss the overall system composition of SPIN and present a concrete example of its use in
structuring a service. Later, in Section 4 we broaden our discussion to show how SPIN can be applied to increase
efficiency across a range of demanding application domains.

2.1 Specialization

An operating system kernel offers two general functions: it provides abstractions of the system's physical and logical
resources, and it implements a set of management policies for those resources. In the SPIN microkernel the two
functions are split. Low-level resource controllers provide lightweight and portable abstractions of the physical
hardware, such as threads and virtual address spaces. They define interfaces providing access to a machine's physical
and logical resources, including a set of global resource allocation interfaces that allow applications to allocate and
deallocate system resources while guaranteeing integrity and progress in cases of high load. The controllers themselves
though do not contain any management policy. Policies are provided either by in-kernel application-specific services
or by dei..ult kernel services. For applications that do not require application-specific management policies SPIN is
an ordinary microkernel with a set of well-defined general purpose services. For applications with special needs SPIN
provides a set of interfaces to low-level resources that may be combined in an arbitrary way to achieve the required
level of efficiency.

All management policies are defined by embedded implementations called spindles. A spindle is a code sequence
that is installed dynamically into the operating system kernel by or on behalf of an application. Spindles run in response
to a particular system event, such as a system call, an exception, or a context switch. They can also be activated by
user code or by events generated within other spindles.

All interaction between an application (or, more likely, an application-level library) and the operating system is
through spindles. The spindle interfaces allow applications to manipulate at a fine-grain level the resources granted by
the kernel controllers. Spindles enable applications to define new system calls through a composition of internal kernel
interfaces. They also enable applications to discover changes in the state of the hardware and the operating system
thefeby enabling them to react to changes in resource allocations and demands with low-latency and high-efficiency
In effect, the application can specialize the operating system kernel to provide the type of service or management
policy required, without paying the overhead of crossing several interface and protection boundaries at each service
invocation.

2.2 Components

The SPIN operating system consists of a set of low-level resource controllers with associated interfaces a set of pre-
defined spindles offering default system functions, and machinery to install and run spindles. Three kernel mechanisms
enable these components: one for associating spindles with particular specific events in the kernel, one for executing
at kernel-level, those spindles associated with an event when that event occurs, and one that verifies the integrity of
spindles when they are installed into the kernel.

Figure 1 illustrates the basic structure otSPIN. Although the system's structure is similar to that of a traditional
microkernel, providing interfaces to services such as threads, address spaces, and memory, the similarity is only
superficial. In a conventional microkernel, the highest-level system services are implemented as a set of layered
abstractions, with the highest layer exporting a few basic interfaces. Applications built to the microkernel interface are
consequently constrained to using the services at the highest layer. While these services may be composed to provide a
rich set of higher-level abstractions (for example, a UNIX process under Mach is defined through a composition of an
address space, some memory, and a thread), the low-level behavior of each abstraction is essentially fixed In contrast
using SPIN, high-level interfaces required by applications and application-specific services are defined in terms of the
lower-level interfaces available to spindles. A program defines its own interface to the kernel through a spindle that
executes in the kernel. In turn, that spindle has access to a large set of kernel interfaces. For example, a program can
construct a spindle that provides an interface for -eating and then starting a new thread of control. The spindle itself
uses more primitive interfaces (create thread, a: : ae stack, set initial thr-d state, start thread) to accomplish this

Compiler
&

Verifier
Application

i

Application

•

User-level
server

z User-level
= server

user level

ixxxxxxwwwtKA^^wwtxK^^ system ca

-^ V ^^^ \^Z^ ^\. ^ ^~ 1 interface

::| -* *~1| EEd Microkernel

kernel level

O ■ application-specific service library 0 - spindle • protection domain ■ kernel controller

• communication installation of a spindle

Figure 1: Tins figure illustrates the basic structure of services on the SPIN microkernel. Services are split into
external servers that maintain global service information, application-specific libraries that provide fast access paths'
to services, and spindles that allow low latency access to kernel resources. In the figure, each service is depicted as
having these three components. A trusted compiler and code verifier ensures that spindles are unable to compromise
the integrity of the system. (Different stipple patterns denote different services.)

At a basic level, a spindle can be used to define the implementation of a traditional system call, serving as a wrapper
around underlying kernel services. At a more sophisticated level, a spindle can enable an application to monitor and
react to changes in global resource allocation without involving costly transfers to user-level code. With this structure,
high-level operating system services, such as filing, networking, virtual memory management, and fine-grained thread
management, can be efficiently implemented as part of each application's address-space instead of as part of the kernel
or a dedicated server.

2.3 Service partitioning

Microkernel-based systems reflect a tension between modularity and efficiency. Services are moved out of the kernel to
user-space to achieve higher modularity, but additional overhead for communication is incurred whenever the services
are accessed. This overhead can be greatly reduced in SPIN by allowing parts of a service to be located in the address
spaces that use them. Figure 2 shows the differences between the decomposition of services on a microkernel and
under SPIN and their influence on communication overhead in a system. There are three cases illustrated.

case I: Placing parts of a server within an application in the form of an application-level library allows application
requests to be served without crossing any protection boundaries. This optimizes system performance for
common operations that do not need kernel interaction or access to data in other domains.

case II: Operations that require tight integration with the kernel can be installed as a spindle, and thus may access
internal kernel interfaces without incurring the overhead of protection boundary crossings.

case III: Installing server code ;u ihe kernel level allows for flexible and rapid response to system hardware and
software events without costly upcalls to a server.

Conventional microkernels with fixed interfaces can use the first optimization, but the other two require new
capabilities that are provided by the spindle mechanism.

CD
C
v-
0)

o
1-
Ü

case I

Application
':

Server

case II

Application

i

case III

Application

z
a.

Application
Servo: Applicat ion

J ':r rv >_• r
Appi ication

Server

i - spindle D - protection domain - flow of control

Figure 2: Comparison of a traditional microkernel server with a partitioned service in SPIN.

2.4 An example

As an example of how components of SPIN fit together, consider the structure of a user-level virtual memory man-
ager [McNamee & Armstrong 90, Harty & Cheriton 92]. A user-level virtual memory manager enables an application
to control the set and contents of physical page frames that are currently backing a given piece of virtual memory An
application can request, say, 100 pages of physical memory from the system's physical page manager. Those pages are
granted in bulk, and the application creates spindles that rely on fine-grained kernel interfaces to the physical mapping
layer to control access and to shuffle pages between disk and memory. By defining a spindle to handle page faults
the pager can inexpensively be notified of changes to a page's access patterns. For example, the pager can implement
LRU-clock with simulated reference bits by defining a spindle that sets a bit in the application's address space on a
reference to a page by defining a spindle associated with the page-write trap that sets a bit in the applications The
pager can even define logical pages that are smaller than the machine's physical pages, detecting writes, for example
to sub-pages in order to collect fine-grained reference information [Hosking & Moss 93].

existing operating system mechanisms (such as kernel threads) can be difficult. In previous work, we addressed these
difficulties with a mechanism called scheduler activations. Scheduler activations rely on the operating system kernel
to convey information about kernel-level scheduling events to applications [Anderson et al. 92].

Multimedia

Multimedia applications, such as video-on-demand, video-conferencing, virtual reality, and interactive learning, impose
special demands on the scheduling, communication and memory allocation policies of an operating system. In general,

. real-time systems implement a simple fixed priority ordering [Hildebrand 92]. Conventional operating systems,
however, support either a single scheduling policy to arbitrate among competing activities, or multiple policies that
promote fairness but favor interactive activities [Black 90]. Some systems provide multiple scheduling policies
but only from among a few fixed policies set at kernel-build time [Tokudaet al. 90]. Flexible, application-specific
scheduling, though, has been shown to provide critical performance benefits for both time-constrained and non real-time
activities [Anderson 93, Anderson et al. 92].

In terms of memory resources, multimedia applications use large amounts of data (audio and video streams) with
access patterns that interact poorly with locality-based page replacement algorithms [Anderson 93, Nakajima et al. 92],
Application-specific virtual memory management policies can solve this problem. High-level information about media
direction, edit cuts, and temporal constraints are directly relevant to page replacement decisions. When presenting
a video stream, for example, an application can sequentially prefetch video frames directly from disk into memory-
resident buffers. Information about synchronization between media streams can also be specified to prevent unnecessary
replacement of pages that are interdependent.

Databases and information retrieval

Databases and information retrieval applications impose severe demands on the filing and memory services of an
operating system. The speed of disks and memory, which are at the base of any file service, have not kept pace with
processor speeds; any leverage that can be applied to increase their performance is critically important to end-application
performance.

Filesystem performance can benefit from application-specific information in several ways. The application can
provide hints about future usage to the filesystem to help it schedule disk traffic [Gibson et al. 92]. This can result in
more effective prefetching policies and lower buffer cache miss rates. An effective prefetching policy can also remove
virtual memory remapping operations from the critical path, since disk blocks are already mapped into the application
address space when they are needed. In addition, the application can inform the kernel about how it will use the buffer
cache, so that the kernel can make informed decisions about physical memory allocation [Stonebraker 81].

4.1 Some application-specific services enabled by SPIN

The application domains described in the previous subsection can be enabled by operating system services that are
customized to the program's needs. Below, we detail some specific techniques.

Extensible interprocess communication

An extensible IPC interface enables applications and servers to define their own semantics for interprocess communi-
cation enabling the best tradeoff between performance and functionality. To receive a message, an application installs
a spindle that can recognize a message destined for it as the receiver. To send a message, an application formats the
message for the spindle, traps to the kernel, and presents the kernel with a block of data intended for a particular
address space, which is represented in the kernel by a spindle waiting to receive a message. Upon executing the
spindle, the kernel delivers data to the corresponding receiver. The responsibility for interpreting the contents of the
message belongs with the receiver.

• compiler technology, such as intraprocedural data flow analysis, symbolic evaluation, and inline expansion These
techn.ques can eliminate much of the overhead of the extension language: the compiler can inline-expand'calls in
spindles to kernel operations, replacing them with direct data structure accesses or even constants and the compiler
can attempt to evaluate predicate expressions guarding kernel operations in the context of the spindle code preceding
the call. With this technology, spindles can be installed and executed quickly.

Advanced compilation technology, such as partial evaluation [Jones et al. 89, Consel 90, Weise et al 91 Jones et al 931
can blend together multiple spindle routines and the surrounding kernel code to reduce the overheads of maintaining
large numbers of spindles. It can also reduce the cost of crossing from the kernel's execution envhv-.ment to the
spindle s. Partial evaluation is a program transformation technique that specializes program code with respect to some
of us argument values. In our context, for example, if several spindles are associated with the same kernel event the
compiler can specialize the event dispatcher to produce a single code sequence tuned just for the spindles installed ai
that time.

4 SPIN and application domains

Application-specific techniques enabled by SPIN'S structure are relevant to application domains that have high per-
formance requirements. Examples include general purpose high-performance computing, multicomputer-based mul-
tiprocessing, shared memory multiprocessing, multimedia, and databases/information retrieval. The performance of
tradmonal operating system services for these problems has been poor, either for the demanding application or all
other applications running at the same time. In this section, we describe the operating system requirements of these
domains and d.scuss the role of application-specific solutions. We then describe a number of key techniques enabled
by SPIN that satisfy these requirements.

General purpose high-performance computing

Many operating system services such as synchronization and scheduling, virtual memory and interprocess com-
munication are generally important for any application requiring high performance. For example, any program
that uses threads internally as a program structuring device [Hauser et al. 93] can benefit from fast synchroniza-
tion [Bershad et al. 92]. Any program that interacts with an operating system server can benefit from fast interprocess
communication [Bershad et al. 90, Draves et al. 91]. Many applications have become sensitive to the degree to which
their memory access patterns are satisfied by an architecture's fast memory system (cache and translation lookaside
buffer) [Chen & Bershad 93]. For example, some compilers now use static blocking algorithms based on the cache
size in order to maximize the cache hit rate during well-formed data intensive computations [Lam et al 91] Programs
with irregular structure must rely on more dynamic information, for example, cache, TLB, or pa°e fault rates These
miss rates may be easy to determine, but potentially expensive to communicate to the application. Application-specific
code in the kernel that can track a program's memory system behavior and provide guidance and feedback to the
runtime can result in improved program performance.

Parallel processing

Application-specific communication protocols [Feiten 92], scheduling, and virtual memory management can improve
the performance of parallel programs running on a distributed memory multicomputer. Fast communication is required
to transmit messages from one processor to another. Appropriate scheduling and synchronization support can ensure
that all threads m a multicomputer program run at the same time to avoid unnecessary stalls due to scheduling
anomalies [Zahorjan & McCann 90, Ousterhout 84]. Application-specific virtual memory services can ensure that
unanticipated page faults do not delay processors involved in a cooperative computation, thereby delaying other
processors. J 6

Shared memory multiprocessing applications require fine-grained scheduling control, lightweight threads [Anderson et al 921
synchronizat.on [Anderson et al. 89], and information about memory system behavior. Multiprocessor applications '
can rely on application-specific thread schedulers, or user-level thread management packages, for high performance
in the presence of relatively fine-grain parallelism [Anderson et al. 89]. Implementing user-level threads on top of

Runtime systems with memory system feedback

Spindles enable low-level performance information to be inexpensively reflected back to applications. For example,
a runtime system can install a spindle that decrements a counter each time an application takes a TLB miss within a
particular range of virtual addresses. When the counter reaches zero, the spindle can notify the application, enabling
it to restructure its virtual memory usage to reduce the load on the TLB.

4.2 Summary

Table 1 characterizes the relationship between application domains and some application-specific services that are
enabled by SPIN. The table shows the extent to which SPIN'S structure facilitates high-performance applications in
each of the domains.

technique

service and/or application

general purpose
computing

multicomputing multiprocessing multimedia database

extensible IPC V VV V VV VVV
application level protocol
processing

V vvv vv V

fast simple network
communication

vvv vvv
application specific file
systems

VV vv vv vvv vvv
synchronization V vvv vvv vv
application controlled vir-
tual memory

vv vv vv vvv vvv
real-time scheduling vvv
scheduler activations V vvv vvv V
memory system feedback V V V vv vv

Table 1: This table illustrates the applicability of different techniques enabled by spindles, and their importance
for different application classes. One tick denotes some applicability, two ticks denote significant improvements in
performance, and three ticks denote critical Improvements.

5 Related work

5.1 Extensibility and the operating system

Extensibility has been the "holy grail" of operating systems design since "THE", one of the first modular operating
systems [Dijkstra66]. An inflexible module structure and poor performance proved to be a substantial drawback
of these systems. Early personal computer operating systems [Redeil et al. 80], which ran all system services and
applications in a single address space, enabled applications to have good performance while being tightly coupled with
the operating system. However, these systems offered no protection against rogue or buggy applications, making them
inappropriate for multiuser environments.

Application-level protocol processing

IPC is an example of a more general style of interaction in which the applications implement a sophisticated commu-
nication protocol such as TCP/IP entirely within application-level libraries. Spindles implement low-level data packet
dispatching mechanisms that couple remote communication with application-level protocol processing.

Fast, simple communication

For many multicomputer applications, the per-message processing required by an application is substantially less than
that needed to transmit the message reliably [Feiten 93]. Low-latency message passing spindles that run at interrupt-
level can substantially improve parallel system performance. For example, active messages [von Ecken et al 921 are
simple interrupt handlers that can be written as spindles, allowing them to run safely in a general purpose computer
system where integrity is as important as performance.

Application-specific file systems and buffer cache management

An application-specific buffer cache manager for a file system can be implemented as a library that allows applications
to access resident data with a simple procedure call but without data copying. A library-based buffer cache manager
can provide for application-specific buffer management policies to ensure a high cache hit rate. Spindles can monitor
page access patterns, and notify applications of changes in the current availability of the virtual memory pages used
to contain buffer cache pages. A long-lived server can act as a caretaker for the buffer cache, guarding its contents as
processes start and terminate, and ensuring consistency across multiple readers and writers.

User-level scheduling

In SPIN, a complete user-level scheduler can be implemented with a per-program spindle that emulates scheduler
activations. The spindle, executed on every kernel-level thread context switch, sends a message to the thread's address
space that reflects the change in scheduling state. A user-level library, in turn, implements application-specific thread
management primitives. F

Synchronization

Synchronization mechanisms coordinate the activity of multiple threads of control that share memory Synchro-
nization mechanisms that assume no contention for shared resources can have lower overhead than pessimistic ones
that assume that contention will occur [Massalin & Pu 89, Stodolsky et al. 93]. In the general case these opti-
mistic strategies require some form of kernel support to ensure correctness in the presence of an oblivious kernel
scheduler [Bershad et al. 92, Bershad 93, Alemany & Feiten 92]. SPIN will make arbitrary synchronization strategies
possible by reflecting scheduling decisions up to applications as they occur, or by providing an in-kernel rollback
mechanism. An application that requires lightweight synchronization can install a spindle that executes on every
thread preemption, ensuring the correctness of optimistic synchronization mechanisms.

Real-time scheduling policies

Spindles make it possible to implement a framework that allows applications to implement their own scheduling
policies associated with low-level context switch and I/O events.

Application-specific virtual memory

Application-specific virtual memory can be implemented by providing an application with physical memory pages
The application can create a spindle that provides access to low-level mapping operations, and another one that reflects
page faults up to an application-specific library.

10

et al. have studied general meta-object protocols, which are interfaces to languages and systems that enable users to
customize and extend the system's behavior [Kiczales et al. 91].

Although SPIN does not support general reflection, it does provide a controlled mechanism by which services can
augment the kernel with their own specialized code sequences (spindles).' Previous reflective systems have suffered
high overhead from the extra layers of abstraction. SPIN relies on dynamic compilation and partial evaluation to ensure
good performance.

Compiler optimization techniques

Runtime compilation of code has been explored in several experimental systems, ranging from a Smalltalk environ-
ment[Deutsch & Schiffman 84] to the implementation ofbit-transfer operations in raster graphics systems [Pike et al. 85]
to debugging [Kessler 90]. Runtime code generation and optimization has also been used to produce speedups in
traditional applications [Keppel et al. 93]. The Self and Cecil systems [Ungar & Smith 87, Chambers & Ungar'91,
Chambers 93, Chambers 92] include automatic mechanisms for determining where optimizations can be cost effective,
and may choose not to optimize in cases where performance will not be improved. SPIN will rely on similar heuristics.
There has been little work in applying partial evaluation techniques at runtime, as required by SPIN. Most partial
evaluation techniques are oriented towards static analyses. Moreover, existing techniques for partial evaluation do not
address the problem of increased code size, which occurs when generating specialized instances of code.

6 Status and directions

We are developing SPIN in the context of the Mach 3.0 microkernel and the OSF/1 Unix server running on DEC
Alpha workstations. We are partitioning the system statically into a SPIN component and a native (OSF/1) component.
Existing OSF/1 binaries will continue to run by accessing the OSF/1 services that manage the native-component.
SPIN will manage the SPIN component across applications that have been explicitly marked to run within SPIN. This
approach allows us to slowly migrate away from a mixed-mode system to one that runs SPIN natively. With this, we
will provide a set of OSF/1 services using the SPIN primitives.

The advantages of the approaches taken in SPIN are not restricted to microkernel-based systems. Any system
that provides a core set of services behind a fixed interface is subject to inadequate performance when faced with
the "wrong" application. The flexible structures and solutions provided in SPIN are therefore also appropriate for a
monolithic system.

We intend to use SPIN both as a research target, enabling us to explore resource management mechanisms as we
construct the system, and as a research vehicle, enabling us to explore resource management policies, as we use the
system. SPIN will support applications in traditional domains, such as UNIX-style workstation computing, and newer
domains, such as multimedia and multiprocessing. While we intend to use SPIN at the University of Washington as
a self-hosting system, and to make it available in its pristine form to other universities and industrial sites, we expect
that additional value will come with the transfer of a few key mechanisms and interfaces to commercial systems, such
as OSF/1 and Windows-NT. These systems, as their application base grows, will be required to provide an application
programming interface that facilitates fine-grained resource control.

References

[Accetta et al. 86] Accetta, M. J„ Baron, R. V., Bolosky, W., Golub, D. B., Rashid, R. R, Tevanian, Jr., A., and Young, M. W.
Mach: A New Kernel Foundation for Unix Development. In Proceedings of the 1986 Summer USENIX Conference,
pages 93-113, July 1986.

[Alemany & Feiten 92] Alemany, J. and Feiten, E. W. Performance Issues in Non-blocking Synchronization on Shared-Memory
Multiprocessors. In Proceedings of the 1992 Principles of Distributed Computing, August 1992.

[Anderson 93] Anderson, D. P. Metascheduline for Continuous Media. ACM Transactions on Computer Systems, 11(3):226-252,
August 1993.

13

Extensible services

Previous research into extensible system services has addressed file systems [Rees et al. 86, Bershad & Pinkerton 88J
scheduling [Anderson et al. 92], communication [Bershad et al. 91], and user-level memory management [Krue°er et ad 93
McNamee & Armstrong 90, Harty & Cheriton 92, Sechrest & Park 91]. No system has provided an efficient way to ' '
compose multiple resources in a coherent manner. For example, with previous systems, in order for an application to
cooperate with the kernel in making fine-grained CPU and memory allocation decisions, control must be transferred
from the kernel to the application and back one or more times each time the kernel changes the °lobal resource
allocation. This context switching overhead can put a high lower bound on the allocation granularity possible in the
system. In contrast to this approach, SPIN provides a single framework in which extensible services can be build

Packet filters

Tfie packet filter offers an example of kernel extensibility [Mogul et al. 87]. A packet filter is run against each incomin«
network packet to demultiplex data packets to higher level protocol software. With careful design, the packet filter
is able to support protocol processing for a large number of applications [Yuhara et al. 94]. SPIN generalizes on the
notion of the packet filter, enabling richer, more complex services to be safely installed into the kernel.

Dynamic linking

In systems such as Spring [Khalidi & Nelson 93], Chorus [Rozier et al. 88], and OSF/1 the kernel can be modified
at run time with a new set of interface implementations for heavyweight services like device drivers or the Unix file
system. Pure object code is downloaded "on-the-fly" from user-level into the kernel, exposing the kernel to protection
violations. In contrast, with SPIN, extensibility is at the interface level (new kernel interfaces can be defined by
applications), fine-grained (particular events within particular applications and threads), and safe (the extensions are
validated both dynamically and statically).

Synthesis

The Synthesis system [Massalin & Pu 89] improved performance through the use of highly specialized and dynamically
constructed interface implementations. For instance, a file open operation in Synthesis would return a handle to a piece
of code optimized for accessing the opened file. However, both the interfaces and the scope of their implementation
were limited to that which was pre-defined by the Synthesis kernel itself. This differs from SPIN, where applications
are able to define both the interface to, and implementation of, system services. Hence, a SPIN application could create
a file open interface whose implementation is optimized not only for the particular file, but also for the access patterns
of the application.

5.2 Language and compiler work

The Fox Project

The Fox project [Cooper et al. 91] applies advanced compiler technology to system software development. The primary
focus of the research is on the extensions necessary to use the Standard ML programming language [Milner et al 89]
in support of systems programming. Standard ML is a type-safe programming language with & rich module system
that enables many of types of extensions that are available in SPIN. The Fox project has focussed on improvino the
performance of the Standard ML compiler in the context of a standalone network service, and has not develop°ed a
general operating system structure.

Reflective systems

Several systems have used reflection to create adaptable systems. A reflective system is one that includes mechanisms
to monitor and modify its own behavior as it executes. In the Apertos operating system [Yokote et al. 91], for example
users customize the system's behavior by choosing among several reflective mechanisms for kernel services. Kiczales

12

[Golubetal. 90] Golub, D., Dean, R., Forin, A., and Rashid, R. Unix as an Application Program. In Proceedings of the 1990
Summer USENIX Conference, pages 87-95, June 1990.

[Gray & Reuter 92] Gray. J. and Reuter, A. Transaction Processing. Morgan Kaufman, 1992.

[Harty & Cheriton 92] Harty, K. and Cheriton, D. R. Application-Controlled Physical Memory using External Page-Cache Man-
agement. In Proceedings of the Fourth International Conference on Architectural Supportfor Programming Languages
and Operating Systems (ASPLOS-TV), pages 187-197, 1992.

[Hauser et al. 93] Hauser, C, Jacobi, C, Theimer. M„ Welch, B., and Weiser, M. Using Threads in Interactive Systems: A Case
Study. In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, pages 94-105 December
1993.

[Hildebrand 92] Hildebrand, D. An Architectural Overview of QNX. In Proceedings of the Usenix Workshop on Micro-Kernels
and Other Kernel Architectures, April 1992.

[Hosking & Moss 93] Hosking, A. L. and Moss, J. E. B. Protection Traps and Alternatives for Memory Management of an
Object-Oriented Language. In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles,
pages 106-119, December 1993.

[Jones et al. 89] Jones, N„ Sestoft, P., and Sondergaard, H. MIX: A Self-Applicable Partial Evaluator for Experiments in Compiler
Generation. Lisp & Symbolic Computing, 2(l):9-50, February 1989.

[Jones et al. 93] Jones, N., Gomard, C, and Sestoft, P. Partial Evaluation and Automatic Program Generation Prentice Hall
1993.

[Julin et al. 91] Julin, D. P., Chew, J. J„ Stevenson, J. M., Guedes, P., Neves, P., and Roy, P. Generalized Emulation Services for
Mach 3.0: Overview, Experiences and Current Status. In Proceedings of the Second Usenix Mach Symposium pages
13-26,1991.

[Kearns & DeFazio 89] Kearns, J. and DeFazio, S. Diversity in Database Reference Behavior. Performance Evaluation Review
1989.

[Keppeletal. 93] Keppel, D., Eggers, S., and Henry, R. Evaluating Runtime-Compiled. Value-Specific Optimizations, 1993.
Submitted for publication.

[Kessler 90] Kessler, P. Fast Breakpoints: Design and Implementation. In ACM SIGPLAN '90 Conference on Programming
Language Design and Implementation, pages 78-84, June 1990.

[Khalidi & Nelson 93] Khalidi, Y. A. and Nelson, M. N. An Implementation of UNDC on an Object-Oriented Operating System.
In Proceedings of the 1993 Winter USENIX Conference, pages 469-480, January 1993.

[Kiczaleset al. 91] Kiczales,G., des Rivieres, J., and Bobrow, D. The Art of the Metaobject Protocol. MIT Press, 1991.

[Krueger et al. 93] Krueger. K., Loftesness, D., Vahdat, A., and Anderson, T. Tools for the Developement of Application-Specific
Virtual Memory Management. In Proceedings of the 1993 OOPSLA, pages 48-64, 1993.

[Lam et al. 91] Lam, M. S., Rothberg, E. E., and Wolf, M. E. The Cache Performance and Optimizations of Blocked Algorithms.
In Proceedings of the Fourth International Conference on Architectural Supportfor Programming Languages and
Operating Systems (ASPLOS-TV), April 1991.

[Lampson84] Lampson, B. W. Hints for Computer System Design. IEEE Software, 1(1):11-28, January 1984.

[Maeda& Bershad 92] Maeda, C. and Bershad, B. N. Networking Performance for Microkernels. In Proceedings of the Third
Workshop on Workstation Operating Systems, pages 154-159, April 1992.

[Maeda & Bershad 93] Maeda, C. and Bershad, B. N. Protocol Service Decomposition for High-Performance Networking. In
Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, pages 244-255, December 1993.

[Massalin & Pu 89] Massalin. H. and Pu, C. Threads and Input/Output in the Synthesis Kernel. In Proceedings of the Thirteenth
ACM Symposium on Operating Systems Principles, pages 191-201, December 1989.

[McNamee & Armstrong 90] McNamee, D. and Armstrong, K. Extending the Mach External Pager Interface to Accommodate
User-Level Page Replacement Policies. In Proceedings of the Usenix Mach Symposium, pages 17-29, 1990.

[Milner et al. 89] Milner, R., Tofte, M„ and Harper, R. The Definition of Standard ML. MIT Press, Cambridge, MA, 1989.

[Mogul et al. 87] Mogul, J. C, Rashid, R. F., and Accetta, M. J. The Packet Filter: An Efficient Mechanism for User-level Network
Code. In Proceedings of the Eleventh ACM Symposium on Operating Systems Principles, pages 39-51, November
1987.

15

[Anderson et al. 89] Anderson, T. E., Lazowska, E. D., and Levy, H. M. The Performance Implications of Thread Management
Alternatives for Shared-Memory Multiprocessors. IEEE Transactions on Computers, 38(12>: 1631-1644, December

[Anderson et al. 92] Anderson, T. E., Bershad. B. N., Lazowska, E. D„ and Levy, H. M. Scheduler Activations: Effective Kernel
Support for the User-Level Management of Parallelism. ACM Transactions on Computer Systems, 10(1)53-79
February 1992.

[Babaoglu & Joy 81] Babaoglu, Özalp. and Joy, W. Converting a Swap-Based System to do Paging in an Architecture Lackin-
Page-Referenced Bits. In Proceedings of the Eighth Symposium on Operating Systems Principles, pages 78-86°
December 1981.

[Bershad & Pinkerton 88] Bershad, B. N. and Pinkerton, C. B. Watchdogs - Extending the UNIX File System Computing
Systems, 1(2): 169-188, Spring 1988.

[Bershad 93] Bershad, B. N. Practical Considerations for Non-Blocking Concurrent Objects. In Proceedings of the 13th Interna-
tional Conferenceon Distributed Computing Systems, pages 264-274, May 1993.

[Bershad et al. 90] Bershad, B. N., Anderson, T. E., Lazowska, E. D„ and Levy, H. M. Lightweight Remote Procedure Call
ACM Transactions on Computer Systems, 8(l):37-55, February 1990. Also appeared in Proceedings of the 12th ACM
Symposium on Operating Systems Principles, December 1989.

[Bershad et al. 91] Bershad, B. N., Anderson, T. E„ Lazowska, E. D., and Levy, H. M. User-Level Interprocess Communication
for Shared Memory Multiprocessors. ACM Transactions on Computer Systems, 9(2): 175-198, May 1991.

[Bershad et al. 92] Bershad, B. N., Redell, D. D., and Ellis, J. R. Fast Mutual Exclusion for Uniprocessors. In Proceeding,
of the Fifth International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-V), pages 223-233, October 1992.

[Black 90] Black, D. L. Scheduling and Resource Management Techniques for Multiprocessors. PhD dissertation Carnegie
Mellon University, July 1990.

[Chambers & Ungar 91] Chambers, C. and Ungar, D. Making Pure Object-Oriented Languages Practical. In Proceedings of
OOPSLA '91, pages 1-15, October 1991. SIGPLAN Notices 26(10). "

[Chambers 92] Chambers, C. Object-Oriented Multi-Methods in Cecil. In Proceedings ofECOOP '92, pages 33-56, June 1992.
LNCS 615.

[Chambers 93] Chambers, C. Analysis and Optimization of Object-Oriented Languages. Technical report, University of Washing-
ton, 1993. LNCS 615.

[Chen & Bershad 93] Chen, J. B. and Bershad, B. N. The Impact of Operating System Structure on Memory System Performance
In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, pages 120-133, December 1993.

[Consel90] Consel, C. Binding Time Analysis for Higher Order Untyped Functional Languages. In Conferenceon Lisp and
Functional Programming, pages 264-272, 1990.

[Cooper et al. 91] Cooper, E., Harper, R„ and Lee, P. The Fox Project: Advanced Developement of Systems Software, Technical
Report CMU-CS-91-187, Carnegie Mellon University, 1991.

[Deutsch & Schiffman 84] Deutsch, P. and Schiffman, A. Efficientlmplementation of the Smalltalk-80 System. In ACM Symposium
on Principles of Programming Languages, pages 297-302, January 1984.

[Dijkstra 66] Dijkstra, E. W. The Structure of the THE Multiprogramming System. Communications of the ACM 90V341-346
March 1966.

[Dravesetal.91] Draves, R. P., Bershad, B. N., Rashid, R. F., and Dean, R. W. Using Continuations to Implement Thread
Management and Communication in Operating Systems. In Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles, pages 122-136, October 1991.

[Feiten 92] Feiten, E. The Case for Application-Specific Communication Protocols. In Proceedings of Intel Supercomputer
Systems Division Technology Focus Conference, pages 171-181, 1992.

[Feiten 93] Feiten, E. W. High-Performance Communication for Parallel Programs. PhD dissertation, University of Washington
July 1993. ° '

[Gibson et al. 92] Gibson, G., Patterson, H., and Satyanarayanan, M. Disk Reads with DRAM Latency. Operating Systems Review
April 1992.

14

[Nakajima et al. 92] Nakajima, J.. Yazaki, M., and Matsumoto, H. Multimedia/Realtime Extensions for Mach 3.0. In Proceedings
of the Usenix Workshop on Micro-Kernels and Other Kernel Architectures, April 1992.

[Ousterhout 84] Ousterhout, J. Scheduling Techniques for Concurrent Systems. In Proceedings of the 3rd IEEE International
Conference on Distributed Computing, 1984.

[Ousterhout et al. 85] Ousterhout, J. K„ Costa, H. D., Harrison, D., Kunze, J. A„ Kupfer, M., and Thompson, J. G. A Trace-Driven
Analysis of the UNIX 4.2 BSD File System. In Proceedings of the Tenth Symposium on Operating Systems Principles
pages 15-24,1985. '

[Phelan et al. 93] Phelan, J. M., Arendt, J., and Ormsby, G. R. An OS/2 Personality on Mach. In Proceedings of the Third Usenix
Mach Symposium, pages 191-201, 1993.

[Pike etal. 85] Pike, R., Locanthi, B., and Reiser, J. Hardware/Software Trade-offs for Bitmap Graphics on the Blit Software
Practice and Experience, 15(2): 131—151, February 1985.

[Redell et al. 80] Redell, D. D., Dalai, Y. K, Horsley, T. R., Lauer, H. C, Lynch, W. C, McJones, P. R„ Murray, H. G„ and Purcell,
S. C. Pilot: An Operating System for a Personal Computer. Communications of the ACM, 23(2):81-92, February

[Rees et al. 86] Rees, J., Levine, P. H., Mishkin, N., and Leach, P. j. An Extensible I/O System. In USENIX Association Summer
Conference Proceedings, pages 114-125, June 1986.

[Rozieretal.88] Rozier, M., Abrossimov, V., Armand, F., Boule, I., Giend, M., Guillemont, M„ Herrmann, F Leonard P.
Langlois, S., and Neuhauser, W. The Chorus Distributed Operating System. Computing Systems, 1(4), 1988.

[Sechrest & Park 91] Sechrest, S. and Park, Y. User-Level Physical Memory Management for Mach. In Proceedings of the Second
Usenix Mach Symposium, pages 189-199, 1991.

[Stodolskyetal.93] Stodolsky.D., Bershad,B.N„ and Chen, B. Fastinterrupt Priority Managementfor Operating System Kernels
In Proceedings of the Second Usenix Workshop on Microkernels and Other Kernel Architectures, September 1993.

[Stonebraker81] Stonebraker, M. Operating System Support for Database Management. Communications of the ACM 24(7V412-
418,July 1981. ' v .

[Thekkath et al. 93] Thekkath, C. A., Nguyen, T. D., Moy, E„ and Lazowska, E. D. Implementing network protocols at user level
IEEE/ACM Transactions on Networking, l(5):554-565, October 1993.

[Tokuda et al. 90] Tokuda, H., Nakajima, T, and Rao, P. Real-Time Mach: Toward a Predictable Real-Time System. In Proceeding,
of the Usenix Mach Symposium, October 1990.

[Ungar & Smith 87] Ungar, D. and Smith, R. SELF: The Power of Simplicity. In Proceedings of OOPSLA '87, pages 227-241
October 1987. Lisp and Symbolic Computation 4(3).

[vonEickenetal.92] von Eicken, T, Culler, D. E., Goldstein, S. C, and Schauser, K. E. Active Messages: A Mechanism
for Integrated Communication and Computation. In Proceedings of the 19th Annual International Symposium on
Computer Architecture, pages 256-266, May 1992.

[Weise etal. 91] Weise, D., Conybeare, R., Ruf, E., and Seligman, S. Automatic Online Partial Evaluation. In Functional

Programming Languages and Computer Architecture,pages 165-191. Springer-Verlag. August 1991. LNCS 202.

[Wheeler & Bershad 92] Wheeler, B. and Bershad, B. N. Consistency Management for Virtually Indexed Caches. In Proceeding,
oj'theFifth International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-V), October 1992.

[Yokote et al. 91] Yokote, Y, Mitsuzawa, A., Fujinami, N., and Tokoro, M. Reflective Object Management in the Muse Operating
System. In Proceedings of the Second International Workshop on Object Orientation in Operating Systems, October

[Young 89] Young, M. W. Exporting a User Interface to Memory Management from a Communication-Oriented Operating System
Technical Report CMU-CS-89-202, Carnegie Mellon University, November 1989.

[Yuhara et al. 94] Yuhara, M„ Bershad, B. N„ Maeda, C, andMoss, J. E. B. Efficient Packet Demultiplexing for Multiple Endpoints
and Large Messages. In Proceedings of the 1994 Winter USENIX Conference, January 1994.

[Zahorjan & McCann 90] Zahorjan, J. and McCann, C. Processor Scheduling in Shared Memory Multiprocessors. In Proceedings
of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages 214-225, Mav

16

